LÓGICA MATEMÁTICA

Inicio
La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un argumento es válido. La lógica es ampliamente aplicada en la Filosofía, Matemáticas, Computación, Física. En la filosofía para determinar si un razonamiento es válido o no, ya que una frase puede tener diferentes interpretaciones, sin embargo la lógica permite saber el significado correcto. En las matemáticas para demostrar teoremas e inferir resultados matemáticas que puedan ser aplicados en investigaciones.
La evolución de la lógica está ligada a la evolución intelectual del ser humano, ya que como ciencia del razonamiento se puede afirmar que su historia representa la historia misma del hombre. La lógica surge desde el momento en que el hombre al enfrentarse a la naturaleza empieza a observar, experimentar, deduce y razona.
Durante el periodo 600 AC hasta 300 AC se desarrollaron en Grecia los principios formales de las matemáticas, a este periodo se le llamo periodo clásico en donde sus principales representantes son: Platón que el introdujo sus ideas y abstracciones; Aristóteles que presentó el razonamiento ductivo y sistemático y Euclides que fue el que tuvo mayor influencia ya que este estableció el método axiomático.
Platón
Platón, propone instaurar en Siracusa una utópica república dirigida por filósofos. Crea la Academia de Atenas que no era solo una institución filosófica, sino centro de formación política para jóvenes aristócratas. Según algunos especialistas, Platón edifica su teoría del conocimiento con el fin de justificar el poder emergente de la figura del filósofo. Sostiene la existencia de dos mundos -el mundo de las ideas y el de mundo físico de los objetos. Según Platón, lo concreto se percibe en función de lo abstracto y por tanto el mundo sensible existe gracias al mundo de las ideas. Platón escoge el formato diálogo como forma de transmisión del pensamiento.
Aristóteles
Los tratados de lógica de Aristóteles, conocidos como Organón, contienen el primer tratado sistemático de las leyes de pensamiento para la adquisición de conocimiento. Representan el primer intento serio que funda la lógica como ciencia.
Objetivos
El objetivo de la lógica matemática es cuestionar los conceptos y las reglas de deducción que son utilizadas en las matemáticas y esto constituye a la lógica una verdadera matemática.
Álgebra de la lógica
Parte de la lógica matemática basada en la aplicación de los métodos algebraicos al estudio de los objetos lógicos: clases y proposiciones. Por una parte, la proposición expresa un sentido (juicio); por otra, designa una verdad (V) o una mentira (M). Así, las proposiciones «El Volga desemboca en el mar Caspio» y «2 x 2= 4» expresan un sentido diferente, pero ambas designan una verdad (tienen el significado de V). [1]
El álgebra de la lógica examina las proposiciones sólo desde el punto de vista de su significado, con la particularidad de que se consideran equivalentes las que poseen un mismo significado de veracidad. [1]
El álgebra de la lógica utiliza la notación simbólica (Simbolismo lógico). Además de los símbolos de las proposiciones, se emplean símbolos para las operaciones: conjunción, disyunción, implicación, negación, con los cuales el álgebra de la lógica forma unas expresiones partiendo de otras. [1]
Una expresión será compuesta si ha sido formada por otras mediante operaciones algebraicas lógicas; en el caso contrario, será simple. Dos expresiones se llaman equivalentes si en cada combinación posible de significados de las expresiones simples en ellas contenidas presentan significados iguales. Así A ® B es equivalente a Aœ Ë B, dado que en las cuatro posibles combinaciones de significados de V y M para A y B: VV, VM, MV, MM, A ® B presenta el mismo significado que Aœ Ë B. [1]
En relación con los conceptos introducidos, se plantean en el álgebra de la lógica una serie de problemas a cuya resolución se aplica esta disciplina. Históricamente, el álgebra de la lógica surgió como álgebra de las clases (Boole) y sólo después fue interpretada como álgebra de las proposiciones. Con los trabajos de V. I. Shestakov y de Claude Shannon, el álgebra de la lógica encuentra amplia aplicación en la teoría de los esquemas eléctricos y de los esquemas con relés de contacto.

La lógica matemática estudia los sistemas formales en relación con el modo en el que codifican o definen nociones intuitivas de objetos matemáticos como conjuntos, números, demostraciones, y algoritmos, utilizando un lenguaje formal.
La lógica matemática se suele dividir en cuatro subcampos: teoría de modelos, teoría de la demostración, teoría de conjuntos y teoría de la recursión. La investigación en lógica matemática ha jugado un papel fundamental en el estudio de las matemáticas.
La lógica matemática no es la «lógica de las matemáticas» sino la «matemática de la lógica». Incluye aquellas partes de la lógica que pueden ser modeladas y estudiadas matemáticamente.
La lógica matemática comprende dos áreas de investigación distintas: la primera es la aplicación de las técnicas de la lógica formal a las matemáticas y el razonamiento matemático y la segunda, en la otra dirección, la aplicación de técnicas matemáticas a la representación y el análisis de la lógica formal.
Si la teoría de la demostración y la teoría de modelos han sido el fundamento de la lógica matemática, no han sido más que dos de los cuatro pilares del sujeto. La teoría de conjuntos se originó en el estudio del infinito por Georg Cantor y ha sido la fuente de muchos de los temas más desafiantes e importantes de la lógica matemática, a partir del teorema de Cantor, a través del estatus del axioma de elección y la cuestión de la independencia de la hipótesis del continuo, al debate moderno sobre grandes axiomas cardinales.
Lógica matemática (o lógica simbólica)

VER VÍDEO REFERENTE
Fuentes:
https://es.wikipedia.org/wiki/L%C3%B3gica
http://www.filosofia.org/enc/ros/log8.htm
https://www.ecured.cu/L%C3%B3gica_matem%C3%A1tica
Comentarios
Publicar un comentario